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ABSTRACT

Robustness properties of nonlinear extende d Kalman examine the possibility of employ ing a pre-conputed
filters with constant gains and riodelling errors approximation to the SKI’ residual-gain , thereby
are presented. Suffi cient conditions for the non— •ntirely eliminating the enorrous computational
di vergence of state estimates generated by such burden of real-time error—covariance propaaation .

C~
) nonlinear estimators are given. In addition , the The principal ir~plications of the results we have

overall robustness and stability properties of obtained in this connection are three—fold :
closed—loop stochastic regulators, based upon the First, we have found that the real—time propagaticn
Linear-Quadratic-Gaussian design me thodology using of error— covariance may actually be unnecessary .

~~~~ linearized dynamics , are presented; the sufficient Specifically, our results imply that for man y ap—
conditions for closed-loop stability have a plications one can obtain satisfactory performance
separation-type” property. from a constant—gain extended Kalman filter (CGEKF),

1. INTRODUCTION designed to be optimal for a constant stochastic
I ,

The substanti4l real-time coeputational burden us — linear eodel crudely approximating the actua l non-
linear system.

posed by the extended Kalman f i l t e r  (EK?) and re—
~~~~ lated suboptirnal nonlinear estimators (cf. Cl , Ch. Secondly, aided by the structural simplicity of

63) significantly limits the scope of applications the CGEKP, we have been able to apply nodern input-
for which these estimators are practical. The output techniques of analysis to ~~~~~ that the

• major portion of this computational burden results C(~~KF is intrinsically robust against the effects
f rom calculations associated with propagating the of approximations introduced in the design of its
error-covari~ nce mat r ix , which in turn is used for residual-gain matrix. “hat is , we have proved
real-t ime upda t i ng  of the gain matrix acting on the that the CGEKF design approach yields under certain
f i l t e r  residuals .  When one considers the gross conditions a nondivergent nonlinear estimator eve -
nature of the approximations that are routinely whe n a relatively crude stochas tic l inear  syster
made in ss deling the stochastic disturbances af- zodel is used in designing the residual gain.
fecting a system and to a lesser extent in rodel- These robustness results take the form of analyti-
ing the interp lay between these disturbances and cally verifiable conditions which also can be used
the system ’s nonlinearities , it seems somewhat to test specific CGEKF designs for nondiverqence ,
surprising that so much real-time computational thereby reducing the engineer s dependence on
effort should be devoted to careful propagation of Pbnte Carlo simulation for design validation. More-
the rodel’s error-covariance matrix. The enpirical over , the nature of these nondivergence conditions

I.. fact that the EK? performs well in many applications is such as to provide a basis for the constructive
> despite the gross nature of these routine approxi- sodification and improvement of CGEKF designs.

• Q..,mations suggests that perhaps the record of suc— Thirdly, our results contine with the linear-
~~~~ eases enjoyed by the EKF is attributable to an
p ..~int r insic  robustness against the effects  of ap— quadratic—optimal—regulator robustness results of

~~~“proximat ions introduced in the design of its resi— ( 2 3 -t 3 1  in a fashion reminiscent of the separation
theorem of estimation and control to suggest a/ I LJj

dual 9ain . powerful new technique , based on li near—quadratic-
_Jith a view towards designing nonlinear estimators Gaussian optimal feedback theory , for the synthesis

~~~~~i th greatly reduced real-tire corputational of am plified dynami cal output-feedback corrpensa-
LI...~ equi rements, we have been thusly motivated to torI for nonlinear regulator systems . The tech—

nique leads to a feedback compensator design con-________________________ _____ listing of a cascade of a CGEKF and an optima l
Research supported in part by AFOS R grant constant linear—quadratic state—feedback (LQSF)
77-’281 and in part by NASA/A~~S grant NGL-22— gain matrix. We have proved that the inherent
009-124. robustnes , of optimal linear-quadratic state-

feedback against unmodeled nonlinearity (21-(33•5P~om 35-308, Electronic Systems Laboratory, De— continee with the intrinsic robustness of the
p a rtmsn t  of Electrical Engineering and Computer CGEK F to assure that such feedb ack designs wi l l  beSciences , M .I . T . ,  Cartridge, MA. 02139

closed-loop stable even in systems with subs tan t ia l
This paper has been submitted to the 1977 IF.EE Con— nonlinearity.
ference on LJec1~ ion and Control and to the IEEE

} Transactions on At~tomatic Control. —~~~~~~~
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The afo rementioned COEK? robustness, nondivergence, stable since the minima l error—bound m a y  become
and regulator stability results are derived in the arbitrarily large as time elapses.
general context of the class of constant—gain non— ‘I’axn and Rasis [4 1 have proposed a constant—gain
linear estimators whose design is not necessarily nodel—r~ ference—type nonlinear estimator which is
based on statistica l considerations—for example , a natural extension of Luenberger ’s observer for
designs intended to optimize structui-al simplicity linear systems, having a design based solely on
or error—transient response . i.e. nonlinear ob— stability considerations. The results of (4 1 show
servers (cf. (4)). This general class of constant- that, given such a nonlinear observer design, if
gain nonlinear estimators includes as a special cax~tain Lyapunov functions can be found, then one- - case the CGE K? , which is designed to be optimal can conclude that
with respect to a statistical criterion. One can
suxmoptimal ly synthesize constant—gain nonlinear a) The estimator is nondivergent;
estimators of this general class employing the b) The estimator can be used for state reconstruc—
same design approach as is used for the CGEKF — tion in a full—state feedback system without caus—
using a constant linear approximation of the actual ing instability. However, from an engineering
nonlinear system, simply design the residual—gain standpoint the resul ts of (4 1 are deficient in that• to be optima l with respect to the design criterion they are nonconstructive: no design synthesis pro-of inte rest. In the context of this broader class cedure is suggested; no me thod is proposed for con-
of suboptimal nonlinear estimators , our results st ructing the Lyapunov functions requi red to testprovide analytically verifiable conditions which the stability of a design; no procedure is suggested
can be used to test the nondivergence of these for optimizing the estimate accuracy of the design.estimators and to evaluate their robustness against Th. CGEKF results presented in the present paper
the effects of design approximations ; though one address all these deficiencies by providing a con-
cannot in general expect such designs to be as ro— structive procedure for synthesizing stable con-bust as the CGEKF . The CGEK? output—feedb ack se- stent—gai n model-reference estimator designs which
paration-type property extends to this broader are to a first approximation optimally accurate .
class of estimators, showing that the nondivergent i~~reover , our results prove that , provided the
estimates can, unconditionally, be substituted estimator is nondivergent , it can be used fo rt rue values in otherwise—stable feedback systems state reconstruction without ever causing instabi-
without ever causing instability. lity, independent of the availability of any

2. RELATED LITERATURE Lyapunov functions.

The literature on the subject of robustness and 3, NOTATION AND TERMINOLOGY
computational considerations in nonlinear estima— 1st this paper the input—output view of systems is
tion is sparse and largely inconclusive. The dis- t~~.n, considering a system to be an interconnec—
cusaion of nonlinear estimation in Schweppe ~~~‘ tion of “black boxes” each representable by its
ch. 131 provides a good intuitive understanding of input—output characterjrtics. As will become
the trade-offs between computational requirements apparent , the input-output view provides a conve-
and residual-gain choice; though the possibility of ni.nt and natural setting for the discussion anda constant residual-gain is not explicity consider- analysis of estimator robustness and divergence,
ed. The idea of using a constant residual—gain for as well as feedback system stability. 1st this
linear filtering is wellknown (cf. (1, 

~~~~
. 238— section the pertinent terminology drawn from (7]—

2421 ) ,  but the connection with nonlinear filtering (111 is reviewed and the notion of estimator di—
has not been established. Of the existing litera- vergence is formalized.
ture on nonlinear estimation, (4] and (61 appear
to be the most closely related to the present paper. An operator is a mapping of fun ctions into func-

tion s—such  as is de fined by a “black box ” which
Gilman and Rhode s (6] suggest a procedure for syn— maps input time-functions into output time—functions .C
thesizing nonlinear estima tors with a pre-coitputable, An opera tor is said to be nonanticipative if the
but time-varying, residual-gain. Their estimator , value assumed by it~ output function at any timelike the EKF and CGE KF , has the intuitively appeal— instant t does not depend on the values assumed
ing structure of a model-refe rence estimator (cf. by its in~ut function at times t > t~ . An operator
(5, p.4031); that is, it consists of an interual is said to be mesoryless or equivalently rtondyna-mode l of the system dynasties with observations en— mical if the instantaneous value of its output at
tering via a gain acting on the residual error be- 

~Th~~
”t depends only on the value of its input at

• tween the system and model outputs. The distin— time t°. A dynamical operator is an operator which
guishing feature of the estimator suggested in (61 is not°necessarily nondynamsical.is that the residual—gain is chosen so as to mini-
mize a certain upper boun d on the me an-square esti- To facilitate the discussion , the various input and 

_____

mate error.  This procedure tends to ensure a ro— output functions considered in this pape r are pre—
bust desig n since, assuming the minimal value of susted to be istedded in function spaces of the - ______

the error-bound does not “blow-up” , the estimator type r~tSi
cannot diverge . A limitation of this design pro- I~~ 0cedure is that the error-bound may be very loose M 2

(R+ . Rr) ~ { R~ ~ Rr ) (3. 1)
for systems with substantial nonlinearity ; so there
is no assurance that the bound—minimizing residual— (11, p. 1251 on which are defined the following
gain is a good choice. Also , there is no a priori inner prod uct and norm respectively 

- -guarantee that the resultant estimator will even be

- . .,~~ 
,y
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<11’ 1? lim 
~ f z~Ct) ~~(t)dt (3.2) i..., if (Fz) Ct ) f (L (t ) )  for some f:R k~R

2,
then VF(z)h  simply the Jacobian ma trix ~fJ~z
(cf. t8, p. 19]). Alternatively, if F is a lirt—

i(z, z> . 

ear operator then for all £~
The r.levance of the above terminology to estima-

The quantity II 1 11 2 can be viewed as the “average tion stema from the fact that for each control in-
put function u, the error e w ~-x of an estimatorpower” in the fun ction z; in fact , if z is genera— can be represented as the outp~t of an operatorted by a stationay random pro cess (Cf. (12, P~ E whose inputs are the system end measurementthen is simply the expected value — U

of z~Ct) z( t ) . amises, ~~~~~

Because the space M2 may be unfamiliar to many e — x — x —  E
~ ~ 

6) , (3.8)
readers , we briefly discuss its relation to the — 

— - - -

similar, but distinct, space L 2 which is more wide-
ly used in input—output system analysis. The fee— To fo rmalize the notion of estimator divergence
ture that distinguish ?4 from L is the intro— the following definitions are introduced: an esti-
duction of the “normaliz~.ng facto~ ” l/t into the ma tor is nondivergent if its error operator is
inner product (3.2) . Whe reas , the L -norm is appro— bounded uniformly in u, i.e. if there exists a

• priately viewed as a measure of the ~total energy ” scalar P (~~. ~~ ~ 0 such that

• of a fun ction, the normalizing factor l/t leads to
the “ average power” interpretation of the norm ~~~~~ !~ II 

< p ( ,~ , 0) ;  (3,9)
(3.3) . The space *42 is la rge r than 4. , every func— ~ 

—

tion in L being included in the subs3ac. of 
It is convergent if p (~ , 0) 0; it is nondivergentcomprised

2of functions of zero norm .
with finite gain if

The .2~~~ 
or norm of an operator F,denoted g(F) and

CE ) <
~~~~~~ - (3.10)II f II respectively, are defined b~r — sqp g

-

q (F)  
~ h f  II ~~ sup . (3. 4) Evi dently , convergence implies nond.ivergence with

0< 1h z II <~ II III finite gain which in turn implies nondi vergence .
These definitions can be loosely interpreted as

The incremental gain of F is follows ; an estimator is nondivergent if mean-squa re
• bounded disturbances produce mean-square bounded

estimate—error; it is nondivergent with f in i t e  gainh i ~~l — f~2 if the mean—square estimate-error is proportiona L
(3.5) to the magnitude of the disturbances; it is con-- 0< hi1~1~h ? <~~~ 

— !2 vergent if the mean-square erro r always tends to
memo . An estimator that i~- not nondive rgent is

• If 9~F ’< m , E is said to have finite gain. Like— said to be divergent.
wise , i f  ~ (F) <o’, then F is said to have finite
incremental gain, The ~perator F is bounded if in- ~ PROBLEM POR?VLATION

puts of finite norm produce outputs of finite norm ; We consider the problem of estimation for the nor.-
i.e., for each z with fl~II <~~~, there exists a scalar linear system

> 0 such that II ~ I l l  < 0( z) . A dynamical
• syste is said to be table if the operator de- — A x  + Su +

scribing its input-output characteristics is bounded; (4.1)
the system is said to be finite gain stable if the
operato r has f in i te  gain. An opera tor F is said to — +

be strongly positive, denoted F > 0, if for some where£)0 and all z -

< z, F z > > c h i z h i 2 
. (3.6) A • 8, C are nonanticipative , continuous , almost-

• — - — — eve~ywRere differentiable , dynastic nonlinear opera-

The operator F is said to be positive, denoted with finite incremental  gain ;
F > 0. if (3.~~) holds with £ 0 .
The de rivative of the operato r F at the point ~ 

~~~~ M 2 (R ~ , ~~~~~. c M 2 (R ,,, , R~) are disturbance in-

defined to be the linear operator VF(~~ ) havi~~ the put functions;
property that for all z is an R~—va 1ued observed output function ;

• VF (z  ) z  u r n
- — 

! (F(~0 + c~) - F~~) ,  (3. 7)  u is an Rm l d  kstown control input function;

x is an Re—valued function which is to be esti-
provided that the indicated l imi t  exists. When mated based on knowledge of ~ and u.

• the derivative VF (z  ) exists , F is said to be dif-
ferentiable at ~~~

“°For examnp l~~, if  F is memo ryless,
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As a candida te for estimator we consider the con— choosing H ( ’ ) ,  e.g. pole assignment (13 , § 7.43 or
Kalmart filtering (14, Ch. 7]. For brevity ofs ta n t - g a in  m o d e l - r e f e r e n c e - t y p e  
notation, the arguments of A , C , and H are sup—mator

. pressed in the sequel — clearly, th. simplest esti-
mator structure results when A , C , and hence H

dt ~~ 

— .. ~~ 
+ - X L  

( 4.2) are chosen to be independent ‘f ~~ .

1 5. NONLINEAR OBSERVER RESULTS
- - We now state two basic theorems concerning the non-

linear observer (4.2 ) . The first  result, Theo remwhere H( ~ ) is a matrix of appropriate dimensions 1, states that substitution of estimates generatedwhose entries depend nondynamically on ~~. When by a nondivergent nonlinear observer for trueH (

~

) is independent of ~ and when A and C are non- values in an otherwise—stable feedback controldynamical, then (4.2) is identicaf in structure to system can never destabilize the closed—loop aye—the so—called observer for nonlinear stochastic tern. This result has obvious implications regard—systems proposed by Tarn and Rasis (43; consequent- ing the utility of nonlinear observers for stately we refer to the structure (4 .2 )  as a nonlinear reconstruction in nonlinear optimal and suboptilnalobserver. The CGEKF is a type of nonlinear observer, feedback control systems . The second result,
just as a Kalman filter is a type of linear observ— Theorem 2 , gives sufficient conditions for a non—
er. linear observer to be nondi vergent. The proo fs
A useful method for describing the dynamical evolu- are in the appendix.
tion of the nonlinear observer s error, Theorem 1: Let G be a nonanticipative nonlinear

(4 ~ 
dynamical operat~ r with finite incremental gain.

— I — 
Suppose that the system (4.1) is closed—loop stab~.e(fi nite gain stable) with feedback u — G x. Thenis by the feedback equations (see Fig. 1) the system (4.1) with feedback u — ~ i11 also
be closed—loop stable (finite gain table) .

I - 1)1 + Theorem 2: Let the matrices P B P(~~(t ) ) and S B
S(i(t)) be symmetric positive definite solutions

1—c’!) !. of the Lyapunov equation
-

~~~~ (4.5)  (A_ ~~ )P + P(l ~_~~ ) T + S _ o  . (5.1)
• where If uni formly almost-everywhere

(4. 6) 1( (A-~~ ( x) ) -H ( C-VC (x) )JP +~~~S > O , ( 5.2)
and A ( x )  and C ( x )  are dynamical nonlinear operators
defi?ted by - — then the nonlinear observer (4.2) is nondivergent

with finite gain.1

• A (x)z A(x + - A x We note that the condition (5.1) of Theorem 2 is
not restrictive: it can always be satisfied whenC (x) z ~ C~~ + 1) - C 1 (4.8) the residual-gain H is chosen under the assumption

;or all z £ N CR , Rst ) .  From this feedba ck repre— the linearization (4.9 ) is exact since , for any
given positive definite 5 , the Lyapunov equationserttation of ~hc

+error dynamics of the nonlinear (5.1) has a unique positive 4efinite solutionobserver (4.2). it is immediately apparent that P if any only if A-H C is a stable matr ix [13,the problem of choosing the residual-gain ~~~~ ~° p.3411. In the situation in which (A, C) — (A . C ) ,as to make the estimator nondivergert t is identical the observer (4.2) will be nondiverg~nt if andto the problem of choosing a stabilizing feedback 
only if (A-H C) is stable. Thus, when the residual-for the system (4.4). gain H is chosen under the assumption that the

In order to facilitate the selection of a suitable linearization (4.9) is exact , a P and art S satis-
• residual—gai n H ( S ) ,  we assume that equation (4 ,4 )  fying (5.1) can always be found by simply picking
• describing the “open-loop error—dynamics” admits any positive definite S and solving (5.1) for P.

the nominal l inearizat ion

~~~~e - A ( ~~) e + v
1In general the matrices A , C, H , P , and S depend

— £(
~) !. on ~ ( t ) .  In this case (L2 )  mus t hold un i formly

with respect to ~~. consequently, allowing A ,where A (s )  and C( ~ ) a rc matri ces of appropriate di- 
~~, H , P and S to depend on ~ offers  no advantagemans ions whose entries in general depend nondyna- 
with regard to satisfying the nondivergence con-mically on è. The idea is to choose the gain !±® ditions of Theorem 2; though it may improve theassuming that ~ is a constant function and that the estima tor ’s error statistics.linearization (4.9) ii exact . The problem is thus

reduced to a t ime-invar iant  l inear estimation prob-
lem for which seve ral methods are available for

L - — •---~~~_— ~-~~~m— - • ~~ -~•- -•• ~~ - • - • • - - -- • • -•-•- • - - • • • • -  ~~~~--~~~~~ • --. • • • • •— _ _ _ _
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The interesting part of Theorem 2 is the condition system(4.9) • i.e., the icalman filter gain (14,
(5.2).  It characterizes a class of nonlinearities p. 2143

• - for which the nonlinear observer (4.2)  is assured -

of being nondive rgent. An important feature of H — t ~~ ~~ • (6.1)
Theorem 2 is the form of condition (5 .2)— i t  is —

• expressed in terms of the deviation of the system where E — > 0 satisfies the Riccati equation2

(4.4) from the linearization (4.9)  used in select—
- - ing the residual-gain. When the deviation is zero 0 — E + * - t c’

~ ~~
1 C ) + S (6.2)

- (i.e., (A, C)E(A, C)) then the condition (5 .2)  is — — —— —
always s~ ti fied since S is positive definite . and S and 0 are the positive definite covari ance

The question naturally arises “How difficult is it matrices 0? the disturbances ~ and 6 respectively.3

to veri fy condition (5 .2 )? ”  The fact that the The resultant estimator is the constant—gain cx-
left-hand side of (5.2)  is linear in A and C tended Kalman filter (C~~KF) depicted in Fig. 2.
and the fac t that a positive1y-weighte~ sum o~ A surprising and import ant consequence of the

— positive operators is positive makes (5.2) much CCEKF approach to nonlinear observer design is
easier to verify than might be apparent at first that, in addition to yielding a suboptimally ac-
inspection. For example, if A and C are menoryless curate estimator design , the CGEKF design proce-

ond if there are constants c~~~ , ~~~ CL — 1, 2; dare is inherently robust in the sense that even
i — 1, ..., p; j , k—l , ..., nY sucilk that for all a crude linearization (4.9)  will suffice for re—

I 
sidual-gain design. The CGEKP design procedure

- 
automatically ensures that the -deviation from the

O> c~~~ < (C — VC(x) 3~~ < c~~~ > 0 design linearization admissible under the condi-
tions of Theorem 2 can be quite large . Ths cx-

• - - - tent of this robustness is quantified in the
O>a~~~ C ( I _ V

~~(!)
)
jk~~~a~~~ 

> 0  fOllowing result:
Theorem 3 (CGEKF Robustness) : If uniformly al-

(whe re EM] denotes the ij-th element of the mat- ~~st—everywhere

rtx H ) ,  thAA one may readily verify that suffici-
ent conditions for (5.2) to hold are (6.3)

(H ) (5.5) + L(t +~~~cTo~~c z ) > o

then the CGEK? is nondivergent with finite gain .4
JL) ( p e e T + e e T p ) + S > O  (5.6) -

jii Proof: Let
(where e denotes the i-tb standard basis vector,
i.e., ti~ vector whose elements are zero except — + Z CT 0~ ~ (6.4)
the i-th which is a one) . To verify conditions 

—

(5.5)-(5.6) requires that one check the positive —

definiteness of as many nxn—matrices as there are
nonzero elements in the set Then (6.2) and (6.3) ensure that (5.1) and (5.2)

respectively are satisfied. The result follows
( 1) (H )(cj j  a~~ h L 1,2; i 1 , ..., p; j,k— l, ~~~~~~~ 

from Theorem 2.
To fully appreciate the implica tions of Theorem 3

• (which can be done,for example, by checking that the with rega rd to the robustness of the CGEI~ ’ design
principal leading minors of each matrix are posi—
tive (13, p. 341)). So, if the nonlinear system ____________________________

(4.4)  is identical to the linearization (4.9) cx- 2We assume that the required controllability andcept for N mecoryless nonlinearit ies,  then one need
only check the positive definiteness of at i~c~~~ 

observability conditions are sat isf ied so that
2N nxn-matrices to verify (5.2). there is a unique positive def ini te  solution of

(6.2) (Cf. (14, pp. 234—243]).
• 6. ‘1~fE ~~NS TANP-GAIN E~~ENDED KALMTN FILTER (CCRKP)
Intuitively, it is clear that if the linearization 31n general, 0, E, A , and C may be chosen to be
(4.9) is sufficiently faithful to the nonlinear dependent on~~(t), in which case E and H alsosystem (4 . 4 ) ,  then the error response of the non- depend on ~ (t) . — —

linear observer (4.2) will be close to the error
response one would get i’, the ideal situation in 47~ with Theorem 2,  no advantage with regard toS which the linearization is exact. This intuition
is validated by the error-bounding results of (6] • 

satisfying the nondivergence conditions of Theorem
(15). consequently, if the disturbances ~ 

3 results from choosing 9, E , A, o rc  to be
o are reasonably well approximated by zero—mean dependent on ~ (ci. footnote 1) .
bite noise , then it is reasonable to expect that
a good suboptitnal minimum variance estimator can be
obtained by choosing the residual-gain H to be the
minimum-variance-optimal gain for the linearized

-
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procedure it is instructive to consider the situ— condition (6.11) boematea 

-

ation in which for all x
— - •  C 60 . - (6.13)

• A (x) — (6.6)
—
- One can interpret the conditions (6.12 ) and (6.13)
C(x) — (di ag 

~!~i 
N JC (6.7) as saying the CGEXF design procedure leads to an

— infinite gain margin , at least 50% gain reduction
so that all the differences between the open—loop tolerance, and at least + 60’ phase margi n in
erro r dynamics system (4.4)  and the design linear— each output channel of the error dynamics feed-
ization (4.9 ) are lumped into the p dynamical non— back system (Fig. 3) — the margins being relative
linearities, N (i 1, ,,., p,, which are in series to the ideal situation in which the linearization
with the syst~ ñ outputs. This is equivalent to all (4.9) is exact. Ennine~rs experienced in classi—
nonlinearity in the system (4.1) being lumped in cal servomechanism design will recognize that

- the actuators and sensors (see Fig. ~~~~~ it is em— these minimal stability margins are actually qui te
phasized that this does not mean that we are re— large , ensuring that the nonlinear observe r error
stricting our attention to systems with only actua— dynamics feedback system of Fig. 3 will be stable
tor and sensor nonlinearity ; rather, we are merely despite substantial differences between the da-
stipulating that the actual system’s open-loop sign linearization (4.9) and the system (4 . 4 ) .
error dynamics have the same input-output behavior Consequently, the CGEKY design procedure is as-
as such a system. sured of yielding a nondivergent nonlinear ob-

server design for systems with a good deal of non-For simplicity , we further assume 0 is of the form linearity.

0 — diag (6 0 ..., 0 ) , (6.8) This surprisingly large robustness of the CCL KF
11’ 22 ’ pp design procedure is mathematically dual to the

Wi th (6 .6) - ( 6 .8)  satisfied , the nondivergence con— robustness of linear—quadratic state—feedback
dition (6.3) of Theorem 3 reduces to regulators reported in ( 2 ) — ( 3 ) ,  wherein full-state-

feedback linear optimal regulators are shown to
ECT di ag(0j ~ (9tl1

( x)- 4)~ .. ., 0~~(7N Cx )— 4fl CE have infinite gain ma rgin , 50% gai n reduction tol-pp -p erance , and + 60 phase margin in each input
channel. This duality, which is a consequence of

+ 4 E > 0, 
- 

• (6.9) the symmetry between the equations governing the
regulation error of linear optimal regulators and

which is satisfied if the equations governing the estimate error of the
• CGEKF (ci. eqns. (8.1) and (4 .3)  of (2 ) vs.

4 (i— i,  ..., p) . (6.10) eqns. (4.4) and (6.2) here) , provided the princi-
pal source of inspiration for the work leading
to these robustness results.The condition (6.10) establishes a “lower bound”

• the inherent robustness of the CGEI~ design pro- 7. PRACIICAL CGEXF SYNTHESIS
cedure, i.e., every CGE KF design can tolerate at The results of the preceding section provide aleast nonlinearities satisfying (6.10) . One can basis for computed—aided—design of practical ,interpret this inherent robustness in terms of the nondivergent CGEKI estimators . The followinggain and phase margin of the feedback representa— procedure shows how these results mi gh t be em—tion (cf.  Fig. 3) of the CCEKF erro r dynamics as ployed for this purpose :follows: Suppose that the N (i—l , ..., p) are lin—
ear dynamical elements wit~~respective transfer Step 1functions I. (a) ( i—l,  ..., p) .  Then , condition
(6.10) becoiñes Pick constant values for A , C , E and 0. The values

of A and C should be initially chosen to reflect
Ra (Li (j w ) )  

~ 
(i=l , ..., p ) ,  (6.11) as tlosely as possible the derivatives V A C x )  sr,d

~~~ 
respectively, i .e . ,  so t h a t ! IA — c 4 ( ~~ and

i.e. the Nyquist locus of each L~ (iw) must lie to I~ —VC (!fl!are small,  at least for those values of x
the right of the vertical line in the complex plane which are most probable — statistical l inearizati n
passi ng through the point 1 + jO . For examp le,  if methods (cf .  (16 , Ch. 7 ) )  may be helpful  in this
L (s) (i—i p) are no~ dynamical linear gains, regard. The matrices 0 and E should be in i t ia l ly

chosen to reflect the covariance of the distur-i~e., Li(iW
).k. then (6.11) becomes bances e and ~ respectively. If the input—output

relations of the operators A , 8, and C are notk > 4 . (6.12) precisely known , then the dsi~ner ma~ wish toconsider compensating for this using state-aug-
Alternatively, if umntation following the spirit of (17)—tie) in

order to reduce bias errors.
L1(s) — e (i1 p)

Step 2

corresponding to a pure phase sh i f t  of angle Compute t and H from (6.1) and ( 6 . 2 ) .  This can
(i—i, . . . ,  p) in the p respective output channels be done with the aid of a digital computer using
of the open-loop error dynasties system , then available software for solving the Ricceti equation.
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Step 3 control laws to suggest a simple , practical non-
linear extension of the celebrated linear-quadratic-Test the resultant CGEKF design for nondivergence. Gaussian optimal output—feedback control designThis can be done any of the following ways : 
technique . The idea is to cascade a CGEKF esti—

a) By checking the conditions of Theorem 3; mater with a constant LQSF gain matrix, both opti-
b) By di rect digital Monte Carlo simulation ; mally designed for the time—invarian t nominal
c) By approximate describing-function simulation linearization of the system (4.1 )

• (1, ~ 6.4].-• k — A x + B u + ~~If the estimator is divergent, go to Step 5; other— (8.1)
wise, procede to Step 4. 

— A + ~
Step 4

with performance inde xCheck the nondivergent CGEKF for satisfactory per—
fornance , i.e. , fo r acceptable error statistics. A
This can be done using one or core of the follow- .J(x, u) — E ( u r n  ~~ JX

T (t)i x(t )  
(8.2)ing approaches:

a) By direct Digital Monte Carlo Simulation; + uT (t) R u ( t ) d t ]
b) By approximate describing—function simula— — —

tion (1, § 6 .4 ) ;  where
c) By using the error—bounding results in (61,

(151. 
~ and 0 are zero-me an white Gaussian with re-

If  pe rformance is acceptable , stop . Othe rwise , spective covariance matrices and 0;
introduce estimate depende nt matrices A ( 1(t ) ) ,  A, B , C a re matrices of appropriate dimensions ;

- C(~~(t ) ) so as to fu rther reduce tI~ (x )-t * (1)II and
•I1 C( x) - C ( x ) I I ; as in Step 1. stati~ tic~ l lineari- R, ~ are positive de finite weighting matrices of
zation weti~o~s may be help here. Compute E(~) appropriate dimensions.
and i~

(
~

) from (6.1) and (6.2) and return to In general A , !. , 
~~~

, 
~~~, ~~~, 0, and may be chosen

to be nondynamically dependent on ~~ . Assuming
Step 5 that the linearization (8.1) is exact , the optimal

Kalman filter residual gain is given by ( 6 . l ) — ( 6 . 2 )
Tak e the divergent CGEKF and , assisted by a corput— and the optimal LQSF feedback is given byer, dete rmine the va lues of x for which the con-
dition (6.3 ) is not sat isfied.  Modify the matri ces u — —R 1 8T K x - (8.3)A and C so as to reduc e the magnitude IA — VA (x) l l
and C - V C(x ~ at these val ues of x. ~f nec— where K — KT > 0 satisfies the time-invariant
essa ry, adjust the and Q 

matrices. Return to RiccatT eq ’ati o~Step 3. -

For systers that are not ‘ too nonlinear” this pro- 0 — X A + A
TK - ~ ~-l BTK + ~ . ( 8 .4 )

cedure can be expected to converge rapidly to an
acceptable CGEKF design . However, for highly non- Cascading the CGEKF with the feedback (8.3) leads
linear systems , the procedure may not lead easily to the suboptimal nonlinear output-feedback control
to a satisfactory desi gn , even when such a design law (see Fig. 4)
exists. A noteworthy limitation of the procedure
is that no explicit  riethod is provided for select— t~ — ~il BTK ~
ing the “best ” codifications of A , C , E , and 0 as Irequired in Step 5. 

— ~ + s - E cT ~~~~~~ ( 8 .5)
• Even in cases where a nondivergent CGEKF estimator

is not possible, it may be possible to exploit 
— c ~ .Theorem 3 to construct a CGEKF estimator which, if

properly initialized and if not subjected to cx- This approach to suboptimal nonlinear output—feedbackcessively large disturbances , has satisfactory per— control design is similar in spirit to the approach• for-manes. This is accomplished by using estimate— outlined in (191, wherein an extended Ka ln’an f i l te r
depe ndent matrices ~ (~ ) , C( s)  , O(~) ,  and j (~

) 5° is cascade d with a time—va r ying suboptirnal feed-
that H S U ( x )  and E!E (~ ) become est Tmate dependent. back gain; however the pre-computed constant gai isAProvided that the es t imate  erro r e~ x-x remai ns small in the contro l law ( 8.5 )  make it drastical ly sirpie~enough so that x lie: i~ the rcqion i~ which (6.3) to implement from the standpoint of real-tire corn—
is sa ti sf i ed , then the est imator Cannot  dive rge . It putational burden, The remarkable robustness of
is ozrphisized th at such an est imutor  requires care— the CGEKF design procedure and of LQSF contro l
ful initialization and may not be aJ,le to recover designs (2)—(3J assure that this approach will pro-fro m la :q ’-  dis tur ~~ nces without re - in it ia l iza t ion , duce a stabilizing feedback contro l law for systemsmuch l i k e  the EKF which in general has s imilar  l i m -  with even substantial nonlineari ty . The extent  ofit a t i on s . this robustness is quantified in the following
8. StJ3 ()PTIMA L UON LJN F.~~R OUT?U’ —PEE DB ACK COU’IWH.LFRS result:
The CUEK F r esul ts  of the present  paper coirb ine with Theorem 4(non linear output-feedback robustness)
the r e s - 1 t ,  of ( 2 ) - )  31 on the nonlinearity toler— If unifo rmly almost-eve rywhere
anco of l inear-quadrat ic  s t a t e — feedback (LQSF)

-- -~~-- --~~~~--~~~~~~~~~~~~ • -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~-- • - - • - - — • --~~ --
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(A - VA(x) + (-Z eT 0~~) (C - V C ( x ) ) ] E  synthesis of practical CGEKF designs ha~ been dis-
— cussed end it has been shown that the CGEKF non-

+ 4 c~ + ~ c
T 0 1 

~ E) > 0 (8.6) divergence conditions can be exploited to con-
structively modi fy and improve CGE KF designs.

- 
- and jf A new method, based on linear-quadratic-Gaussian(8.7)

optimal feedback theory, has been proposed for the
- A + (B-B) (_ i~~BTX ) )  + + K B R ie t’!)> , synthesis of suboptimal Output-feedback control

laws for nonlinear systems . The me thod leads to
then the system (4.1 ) with output—feedback (8.5) a simply-structured nonlinear dynamical feedb ack
(as is depicted in Fig. 2) is finite gain stable, law that is drastically simpler to implement than

suboptimal linear-quadratic— Gaussian nonlinearProof: This result is a direct consequence of feedback controllers inco rporating a time-varyingTheorem 9.1 of (2 )  and of Theorems 1 and 3 of this gain and an EKF (c f .  ( 19]). The feedback lawpaper: Applying Theorem 3, condition (8.6) ensures deconposes naturally into an LQSF gain matrix andthat the CGEXF is nondivergent with finite gain; a CGEKF estimator in a fashion reminiscent of the
applying Theorem B.l of 12), condition (8.7) ensures way the separation theorem of estimation and con-
that the system (4.1) with full-state feedback 

tro l leads to a similar decomposition in linear
~8. 3) is stable with finite gain; the result fol— problems. It has been shown that the inherentlows from Theorem 1. robustness of the CGEKF des4gn procedure and of

We emphasize that the matrices A , B , C, ~~,, R , 0, linear—quadratic state-feedback combine to assure
in general can be chosen to depend on A’ This that this design approach will lead to a stable

may be help ful in optimizing the closed—loop tran- feedback law for systems with substantial non-
sient response of the suboptimal nonlinear output— linearity.
feedback system — especially, in adj ustable set— A limitation of the synthesis procedure for CGEKFpoint regulator design s , where it may be preferable estimators presented in this paper is that forto have a feedback law which is dependent on the highly nonlinear systems the effectiveness ofsystem’s operating point, the procedure becomes greatly dependent on the

9. CONCLUSIONS designer ’s intuition and judgement in selecting
the linearization and noise covariance matricesEffo rts to find methods for reducing the real—time 
(A , B , C, E , 0) . While the use of (6.3) in ~~~~~~~~

~onçutational burden of the extended Kalnian filter 5 provides valuable guidance in this regard , itha ve led us to consider the possiblity of a con— does not provide a clearly defined algorithm.stant—gain extended Kalman f i l ter  (CGEKF) , de— 
Thie will be the topic of future research.signed to be optimal for a constant linear approxi - -

ination of the actual nonlinear system. Since the Regarding other future research oessthilities ,
residusl-gai.- fo r a CGEKF estimator is constant is noteworthy that the assumption in this paper
and precomputable , the enormous real—time computa — that the dependence of H on ~ is memoryless is
tional burden of error-covariance propagation and superfluous ; that is. all of the conclusions.
residual-gain updating is eliminated , drastically results, and proofs in this paper remai n valid
reducing real-time computational requirements. without this assumption. Howeve r , if  H depends
Because in many applications the linearization and on ~ in a-more  complex way—such as it does in -

disturbance modeling approximations made in CGEKF the extended Kalman f i l ter — it is generally much
design may be only slightly cruder than the gross core difficult, if not im~-onsible , to verify the -

approximations that are made in EKF design , it is nondivergence conditions of Theorems 2 end 3.
expected that the error-performance or CGEKF de- Future research may reveal practica l tests , simi—
signs may actually be competitive with SKI designs lar to those introduced in this paper, for veri-
in many applications. fying the nondivergence of extended Kalnan f i l ters

and other model-refe rence-type estimators having
• By representing a nonlinear estimator as a servo a residual—gain with a complex dynami ca l depen-mechanism in which error is the output to be re— dence on the estimate history .gulated, we have been able to apply modern input-

output techniques of analysis to generate results 10. ACKNc~~LEDGEMENT
explicitly characterizing the robustness of CGSKF We gratefully acknowledge the assistance ofestimators—and , core generally, estimators having Prof. S.K. Hitter in bringing to our attention 

-the structure of the nonlinear observer (4.2)
the work of Corduneanu (11) on the function spaceagainst the effects of approximations introduced M (R+, R

r).in designing the residual gain. These results have 2
the form of analytically verifiable conditions on
the deviation of the constant linear design model APPSHDXIr
from the actual nonlinear system. The conditions,
when satisfied, assure that th~ estimator is non— In this appendix the results of Zame s [‘7) (as
divergent. The conditions have been used to prove elaborated upon in (9)) are used to pro ve Theorems
that the CGFKF design procedure is intrinsically 1 and 2. We begin by introducing a definition.
robust in that the procedure automatically leads

Definition: Let F: X ,i~Y be an operator, Then theto a nondivergent estimator design for Systems incremental operator F(x) is defined bywith even a relatively large degree of nonlinearity.
The extent of this nonlinearity tolerance is 

F (x  + 6x) — F x (Al)quantitatively characterized by Theorem 3. The .. — — — — — - —
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for ~~~ A and dx elements of X. So, for all T) c M 2 (R~ , t)
Proo: of meo

~~~.!.
; 

‘fl, F(x)n> .<r~, do>8 G x - B G ’ x+e) - 8 G x  + (B G) (x) p (A2)
A 1

Let ~ + (8 C) (x)e .  Then the dynamics of the 
— f  < ~ VF( ) dø . (A.U)closed-loop system with u — G ~ satisfy
0

A — ~ ~
) ) A  + i, ’ . Thus , a sufficient condition for CAb ) and hence

(ABb ) to hold is V F(x ) uniformly almost—everywherewhereas the dynamics with u = Gx satisfy 
strongly positive; ti~at is, uniformly almost-everywhere

~~~A 
(A+ 5G)x+ ~~ . (A4 ) 

( (A- VA (x) ) - H( C - V C(x ) ) )p + L s > o  (Al l)Since by hypothesis (A4) is stab le (finite gain
stable), it is sufficient to observe that 
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5kctually Theorem 3 of (7J merely claims bounded-
mess (i.e., stability as defined in this paper)
rather than finite gain stability. A careful
review of Uie proofs of (7) reveals that the— I V

~(A)dA stronger claim of finite gain stability is justi-
fied in the present situation (of. [9, p. 109)).

/ VF (x+p fl)fl dp .  (All)
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